- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jha, Trisha (1)
-
Pesaran, Bijan (1)
-
Sani, Omid_G (1)
-
Shanechi, Maryam_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Objective. Improvements in recording technology for multi-region simultaneous recordings enable the study of interactions among distinct brain regions. However, a major computational challenge in studying cross-regional, or cross-population dynamics in general, is that the cross-population dynamics can be confounded or masked by within-population dynamics. Approach. Here, we propose cross-population prioritized linear dynamical modeling (CroP-LDM) to tackle this challenge. CroP-LDM learns the cross-population dynamics in terms of a set of latent states using a prioritized learning approach, such that they are not confounded by within-population dynamics. Further, CroP-LDM can infer the latent states both causally in time using only past neural activity and non-causally in time, unlike some prior dynamic methods whose inference is non-causal. Results. First, through comparisons with various LDM methods, we show that the prioritized learning objective in CroP-LDM is key for accurate learning of cross-population dynamics. Second, using multi-regional bilateral motor and premotor cortical recording during a naturalistic movement task, we demonstrate that CroP-LDM better learns cross-population dynamics compared to recent static and dynamic methods, even when using a low dimensionality. Finally, we demonstrate how CroP-LDM can quantify dominant interaction pathways across brain regions in an interpretable manner. Significance. Overall, these results show that our approach can be a useful framework for addressing challenges associated with modeling dynamics across brain regions.more » « less
An official website of the United States government
